B.Sc (III) PCM

Paper-II set A
Complex Analysis
Time: 2:30
Maximum Marks: 50

Unit I

1. (a) Show that a sterographic projection projects circles into circles or straight lines.
(b) Define Analytic function. State and prove the necessary condition for $f(z)$ to be analytic.
2. (a) Derive the polor form of the Cauchy Riemann Equations.
(b) Show that the function $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ where $f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}},(z \neq 0), f(0)=0$ Is continuous and that the Cauchy Riemanne equation are satisfied at the oigin .yet $f^{\prime}(0)$ does not exist.

Unit II

3. (a) If $f(z)$ is analytic with a continuous derivative in a simply connected domain G and C is a closed contour lying in G then $\int_{c} f(z) d z=0$.
(c) Verify cauchy's theorem for the function $5 \sin 2 z$, if C is the square with vertices at $1 \mp i,-1 \mp i$.
4. (a) Prove that The derivative of an analytic function is itself an analytic function.
(b) Evaluate $\int_{C} \frac{e^{2 z}}{(z+1)^{4}} d z$ where C ia a circle $|z|=3$

Unit III

5. (a) Find the radii of convergence of the following power series: $\sum \frac{-1^{n}}{n}(z-2 i)^{n}$
(b) State and prove that the taylor theorem.
6. Define laurent's theorem (a) expand the function $f(z)=\frac{1}{(z+1)(z+3)}$ in the powers of ($z+1$) valid in the region $0<|z+1|<2$.

Unit -IV

7. (a) Define singularities and explain its kind with examples.
(b) prove that Let a be isolated singularity of $\mathrm{f}(\mathrm{z})$ and if $|f(z)|$ is bounded in some deleted neighborhood of a, then a is a removable singularity.
8. (a) Find the residues of
$\frac{z^{2}}{(z-1)(z-2)(z-3)}$, at $z=1,2,3$ and infinity and show that their sum is zero.
(b) suppose that $\mathrm{f}(\mathrm{z})$ and $\mathrm{g}(\mathrm{z})$ are analytic inside and on a simple closed contour C with $|g(z)|<|f(z)|$ inside C

Unit V

9 (a) Evaluate $\int_{0}^{\pi} \frac{a d \theta}{a^{2}+\sin ^{2} \theta},(a>0)$
(b)Show that the function $f(z)=\frac{1}{a}+\frac{z}{a^{2}}+\frac{z^{2}}{a^{3}} \ldots \ldots$. can be continued analytically outside the circle of convergence.
10. Define conformal mapping. Explain sufficient condition for $\mathrm{w}=\mathrm{f}(\mathrm{z})$ to represent a conformal mapping

